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I. Introduction:

Economic operation of aircraft depends heavily upon aircraft landing under

all weather conditions. Profit or loss is determined by the time required for

landing, especially for short haul aircraft. This condition is well known, as

is evident by the existence and efforts of organizations such as RTCA (Radio

Technical Commission for Aeronautics) and ARINC (Aeronautics Radio, Inc.).

As noted by Mr. Lynn L. Hisk (Hughes Aircraft) "Commuters (short distance

passenger aircraft) cannot make the grade financially unless they can maintain

an on-time, all-weather operation . . that does not appear practical within

the context of present navigation and ATC (air traffic control) systems."

Boeing's D. Clifford pointed out that an AFM (automatic flight management)

system could be realized only with "precise position and velocity information."

Precise velocity information, especially rate of change of altitude, is

difficult to obtain. In this report a filter is developed which gives the

optimum estimate of the rate of change of the state of a system. The actual

noise environment in which the filter will operate is then determined and the

operation of the filter simulated in this environment.
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II. Optimal Filters:

In this section the optimal filters for the estimation of the state

(Kalman filter) and the rate of change of state (Martin filter) will be

developed.

The development of the Kalman filter which follows will closely follow

that of Liebelt and Bergeson.l Their derivation is repeated here because it

is not easily available in the literature.

Consider, a system described by the following sets of difference equations

and observation equations:

Xn+l --n x n
y Cx + v

y =; Cxn + vn n n

Where un and vn are random sequences with the properties:

n n
E(un)= E(Vn) =O

Cov[u, Un] = P

n n

Cov[u, nVm] 

Cov[u , u ] = Cov[v vm] =0 mrn
n m n' m

in which E( ) is the expectation operator and Cov [ ] denotes

matrix of the vector in the brackets.

It is shown in Liebelt and Bergeson that the optimum est

state has the form:

x-n+l X + Kn (Y - Cx)n~~l n n n

(1)

(2)

the covariance

imator of the

(3)

where

x is the estimate of x , and K is a matrix chosen to minimize then n n
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mean-squared-error in x Let x = x - x and R = E[x x ] where x is the
n n n n n

transpose of x. The Kalman filter problem is, given R , find K so as to
n ~ n

minimize the diagonal elements of Rn+1 . This is equivalent to minimizing

the mean-squared error in xn
n

Substituting Equation 2 into Equation 3 and subtracting the result from

Equation 1 gives:

x+ - x+1 =(Xn -x) -KC( -x) +u -Kyxn+l n+l n n n nn (n n n n n

Letting x
n
- x

n
x and combining terms gives:

n n n(4)

Xn+l Xn + Un Knvn

The transpose of Equation 4 is:

n+l n n nn

Multiplying Equation 4 times Equation 5 gives:

xn+l xn+l = ( K - K n C) + K uv + Kn

1 (U' 1 1 -1 1 I
n n nn n n n n

Kn vnExn (
4

- KnC)I + un]

Taking the expected value of both sides of this equation and noting that

x, un, and vn are independent gives the following expression for Rn+1

Rn+l = E(n+l Xn +l) = ( - KC)R n ( 1 + P + K K1 (6)

Expanding and collecting terms gives the matrix equivalent of a quatratic

in K
n

R1 + KCRn 1 + P1R Kn[CRC1 + Q]-K CR R C K +RR + P (7)
n+l n n n n n n n 1
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To find the value of K which minimizes Rn+l it is necessary to complete

the square. Let Rn+1 be expressed in the form:

Rn+1 = (KnY - Z)(KnY - Z)I + U

If values of U, YV, and Z can be found which make Equations 7

tical then Equation 8 can be used to find the optimum value of K

the resulting minimum Rn+1 .

Expanding Equation 8 gives:

(8)

and 8 iden-

together with

Rn+ = K -YY K1 ZYK + ZZ + U
n+i n n n n

For Equations 7 and 9 to be equivalent the following relations must hold:

CRC1 + Q = YY1 (10) CR n1 = yZ1 (12)
n

C1 = 1
n

(11) pRn l + P1 = ZZ1 + Un I

1
Relation 11 is the transpose of Relation i2 once it is realized that R = R

n n

Since R and Q are symmetric matrices CRC 1 + Q is symmetric. Since any

symmetric matrix can be represented as the product of a matrix and its trans-

pose, the matrix Y can be found; once Y is found Z may be found from Relation 11.

U can then be found from Relation 13.

For these reasons Equation 7 can be expressed as Equation 8. Since

(K Y - Z)(K Y - Z)1 is positive definite the minimum value of Rn+l occurs

when:

(14)KY= Z
n

multiplying by Y1 on the right gives

K yyl = ZY1
n

4
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Substituting Relation 10 into the left hand side and Relation 11 into the

right side gives:

Kn[CR C + ] 1 = R C 
n n n

Multiplying on the right by [CR C1 + Q] gives

Kn = RnC
I
[CR C1 + Q] I

n n n

The minimum value of Rn+1 = U can then be easily calculated.

Rn+
1

= U = Rnl + P1 - Z 1n+l nI

From Relations 11 and 12 ZZ1 may be obtained

ZZ = fRnC [yY ] CRnln n

(15)

(16)

(17)

(18)

or from Equation 16

ZZ = K CRnpl, therefore, the minimum value of Rn+1 is:n n n+1

R R =Rn + P K CR (19)

Equations 3, 16, and 19 then represent the basic operating equations for the

Kalman filter.

The only additional information required to run the filter is an initial

estimate of the covariance of the error, Ro, and the observed samples, Yn
n

Estimates of the Rate-of-Change of State

The Kalman filter gives the best estimate, xn of the state of a system.

There are many situations where the rate-of-change of the state of a system is

the quantity of interest.
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Assume that Equation 1 is a discrete version of the set of continuous

differential equations:

x(t) = Ax(t) + u(t) (20)

If the only information available at the n'th time interval is xn, the

best estimate of the state of the system, then the best estimate of x(t) will

be:

x = Ax (21)n n

assuming that the noise u(t) has zero mean. This will be called the Kalman

estimation since it can be directly obtained from xn the output of the Kalman

filter.

Since xn is independent of yn the estimate in Equation 21 does not use

all of the information available at the n'th time period. The Martin filter,2

has been developed to take advantage of the information in Yn to obtain a

better estimate of x
n

The Martin filter uses the following equation to estimate xn

An = Axn + Hn(Yn CXn) (22)

This is the same as the Kalman estimation except that the term H (yn - Cx )

is added to correct the estimate on the basis of the new observed Yn. The

matrix H will be chosen to minimize the covariance of the error in x.n n

n
The optimum value of Hn will now be derived. Equation 20 evaluated at the

n'th time interval can be written:

Xn = Axn + u(nT) (23)

u(nr) in Equation 23 is a different quantity than un in Equation 1. u is the
n n

forced response of the system due to the input u(t) over the time interval

(n-l)T < t < nT. Let P2 = E[u(nT) u(nT)l]2

6



Let the estimation error be:

e x - x = Ax + u(nT) - A = H(yn n (24)
n n n

Substituting yn from Equation 2 and collecting terms gives:

en = (A - H C) + u(n) - H v (25)

where x = x - x
n n n

1 -1 1 1 1 1
e = xn(A - H C) + u(nT) - v H (26)

nn n n

The re fore:

e e = (A - HC x xn (A -H C) 1 + u(nt) u(n-r) + Hvv H1
nn n nn n n n nn

+ (A - H C) u(nT) - (A - H C)x v H1 + u(nT)3n (A - HC)
n n n n nn n n

- u(nt) v1H 1 Hvn (A - H C) - H v u(nT)
an n n n n

Taking the expected value and assuming that

1 1 1
E(x u(nT) ) = E(xnv ) = E(u(nT)v ) = O gives

n nn n

E(ene) = (A - H C) R (A - HnC) + P + Hn QH (27)

Expanding Equation 27 and combining the various "powers" of Hn
gives:

E(enen) = H [CRC + Q]H - AR C H H CR A + AR A + P (28)
nn n n n n n n n n 2

The equation is in exactly the same format as Equation 7 and exactly the same

minimization procedure gives the optimum value of Hn. The value is:

H = AR C [CR C + Q] (29)
n n n

Let E(ene ) be the minimum value of E(ene ) then:

E(ene) = AR A + P - H CR A (30)
En n n 2 n n
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Comparison of Kalman and Martin Filters

Since the Martin filter can be reduced to the Kalman filter, Equation 21,

by letting Hn = O. The covariance of the error for the Kalman filter may be

obtained from Equation 30 by letting Hn O. Thus

(Kalan filter) Ee = A + P2 (31)(Kalman filter) E(ene AR A n

Letting A be the difference between Equations 31 and 30 gives:

A = H CR A1 (32)
n n n

A is then the improvement in the covariance of the error caused by using

the Martin instead of the Kalman filter. In each application A will have to

be evaluated to see if the reduction in error is sufficient to justify the

additional complexity of the Martin filter.

The effectiveness of the Martin filter in estimating the rate of descent

of an aircraft is a function of the noise characteristics of the signals from

the pitch gyro and the radar altimeter. The next section of this report is

devoted to a study of these noises.
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III. Noise Analysis:

In this section statistical characteristics of the measurement noise are

determined using real data determined during flight. The noise data was ob-

tained from NASA Guidance and Control Branch, Ames Research Center, Moffet

Field, California. A C8A, STOL aircraft was flown over level ground and

through several landings. The outputs of the pitch gyroscope and radar

altimeter were recorded on an Ampex FR-1300 seven channel FM tape recorder.

In the development of both the Kalman and Martin filters it was assumed

that the measurement noises were uncorrelated. That is E(vnvm) = 0 if nfm.

This is equivalent to saying that the autocorrelation function R(T) = 0 for

all T > T, where To is the time interval for the discrete Kalman filter.

Thus, it was necessary to obtain R(T) for both the altimeter and pitch gyroscope

noise. The power spectrum of the noise was obtained to determine if periodic

signals such as power supply hum were present in the noise. Any such periodic

noise must be filtered out if R(T) is to approach zero as T tends to infinity.

In both the Kalman and Martin filters quadratic loss functions of the form

E(x x ) are minimized. It is well known that the optimum filter is not depen-

dent on the shape of the loss function if the noise is Gaussian. For this

reason the first order density function was obtained to determine if the noise

was Gaussian.

The only measurement noise parameters actually used in either filter are

the diagonal elements of the Q matrix. These are the variances of the altimeter

noise and the pitch gyroscope noise. These were obtained by evaluating R(-) at

T = 0 and as a check were obtained from the density functions.

The signals of the altimeter and pitch gyroscope were recorded by an on-

board, FM tape recorder. They contain the real values of the altitude and pitch

9



angle plus the noises to be studied. For both the altitude and pitch angle

signals, the slowly varying D-C signals were blocked by a 5 mfd. capacitor.

The imput impedance of the Signal Analyzer is of the order of one megohm.

Therefore the half power cut off frequency 1/RC = 0.2 Hertz, and thus only

noise frequencies less than 0.2 Hertz is lost.

The noises are typified by Figure 1 and Figure 2.

50-

ac0 01

-- = -50

I I I I I
0 250 500 750 1000

Time, Millisecond

Figure 1. Noise of Radar Altimeter

50

4-J 0

., -50

Q.-

0 250 500 750 1000

Time, Millisecond

Figure 2. Noise of Pitch Gyroscope

The Power Spectrum Function

With the assumption that the Ergodicity Theorem for Power Spectrums is

satisfied for these noises, there are several time averaging techniques avail-

able for obtaining the Power Spectrum. The method used employed a Model CAS 8330

10



Signal Analyzer and a specialized hybrid computing system. The Algorithm and

the curves are presented in Figures 3, 4, and 5. In the curves only relative

amplitudes are given.

From Figure 4 and Figure 5 it is clear that the power spectra of both

noises have significant components at 400 Hz and negligible components at

frequencies larger than 400 Hz. Since the FM tape recorder and the aircraft

instruments were all driven from the 400 Hz power available in the aircraft

it is not possible to determine if this large 400 Hz component was present

in the altimeter and pitch gyro outputs, or was introduced by the FM tape

recorder. In any case it can easily be removed. Before the autocorrelation

function, R(rT), was calculated the 400 Hz component was removed with an electron-

ic low-pass filter which suppressed it 40 d.b.

These filtered noises, are typified in Figure 6 and Figure 9. Their power

spectrums are shown in Figure 7 and Figure 8.
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Figure 3. Algorithm for Computing Power Spectrum
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FROM NOISE

COMPUTER POWER SPECTRUM

S (P) FOR P=1 to 499
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Figure 4. Power Spectrum of Altimeter Noise

13



100

10

0

0 100 200 300 400 500

FREQUENCY, HERTZ

Figure 5. Power Spectrum of Pitch Gyroscope Noise
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Figure 6. Altimeter Noise with 400 Hz. Removed
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Figure 7. Power Spectrum of Altimeter Noise with 400 Hz. Removed
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Figure 8. Power Spectrum of Pitch Gyroscope Noise with 400 Hz Removed
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Figure 9. Pitch Gyroscope Noise with 400 Hz. Removed

The Autocorrelation Function

With the assumption that the Ergodicity Theorem for Autocorrelation func-

tions is satisfied for these noises, there are several ways to obtain the Auto-

correlation functions. The method used here employed the Model CAS 8330 Signal

Analyzer and a specialized hybrid computing system. The Algorithm and curves

follow. The gain of the analyzer was determined by using a known sinusoidal

input signal. The gain adjustment was left at this setting during the noise

analysis. The value of the gain permitted the calibration of the data scale.

The First Order Density Function

The first order density function was obtained from a strip-chart recording

of the filtered noises. Samples were taken every 0.1 second. From Figure 11

and Figure 12 it can be seen that these samples are not highly correlated and

18
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READ T, ,. N

Ii = i+l

"F

+
I C(P) = C(P) + Ci(P)

D . i-N

Figure 10. Algorithm for Computing Autocorrelation Function
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therefore, it is reasonable to assume that the samples are independent. After

sampling 3,487 points for the altimeter noise and 4,000 points for the pitch

gyroscope noise, the number of points at the same voltage were counted and

their frequencies at 25 discrete values from -12 millivolts to 12 millivolts

were determined. The relative frequencies are given in Tables 1 and 2. Plots

of relative frequencies versus voltages are shown in Figures 13 and 14.

These relative frequencies come very close to Gaussian curves with vari-

ances of 11.8 (millivolt)2 and 19.5 (millivolt)2 respectively.
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TABLE 1

FIRST ORDER DENSITY FUNCTION (RELATIVE FREQUENCIES)
OF THE ALTIMETER NOISE

Number of Samples = 3487

Amplitude of Noise No. of Relative Frequency
(millivolt) Occurrence

2.87 x 10- 4

1.72 x 10-3

1.72 x 10-3

3.16 x 10-3

8.36 x 10-3

2.07 x 10-2

2.09 x 10-2

4.42 x 10- 2

5.93 x 10-2

7.4 x 10-2

9.46 x 10-2

1.11 x 10-1

1.17 x 10-'1

1.07 x 10'1

9.35 x 10-2

7.34 x 10-2

5.23 x 10- 2

4.04 x 10'2

2.87 x 10-2

1.69 x 10
-
2

1.15 x 10'2

5.73 x 10-3

3.73 x 10-3

1.72 x 10-3

2.87 x 10- 4

12

11

10

9

8

7

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

1

6

6

11

29

72

101

154

207

258

330

386

406

375

325

256

183

1 42

100

59

40

20

13

6

1

23



TABLE 2

FIRST ORDER DENSITY FUNCTION (RELATIVE FREQUENCIES)
OF THE PITCH GYROSCOPE NOISE

Number of Samples = 4000

Amplitude of Noise No. of Relative Frequency
(millivolt) Occurrence

12

11

10

9
8

7
6

5

4

3
2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

1

8

10

24

24

92

132

200

255

344

353

362

366

355

350

350

280

212

140

72

64

42

21

3

0

2.5

2

2.5

6

6

2.3

3.3

5

6.4

8.6

8.8

9.05

9.15

8.9

8.75

8.75

7.0

5.3

3.5
1.8

1.6

1.05

5.25

7.5

x 10-4

x 10-3

x 10-3

x 10-3

x 10-3

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10- 2

x 10-2

x 10 - 2

x 10-3

x 10- 4

0
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Figure 13. Relative Frequencies of the Noise of Altimeter and
Gaussian Noise with Variance Equal to 11.8 (millivolt)2
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Figure 14. Relative Frequencies of the Noise of Pitch
Gyroscopy and the Gaussian Noise with
Variance Equal to 19.5 (millivolt)2
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Summary of Results

The implications of the noise analysis on the operation of the Kalman and

Martin filters can be summarized as follows:

1. The autocorrelation function drops to a small part
of.its value at T = 0 for values of T > 0.1 second.
This implies that if the filter is updated every
0.1 second the noise samples can be assumed independent.

2. The fact that the noises are Gaussian means that the
filters derived in Section II are optimum for any loss
function, not just the quadratic loss function used in
the derivation. Thus, any discussion of the appro-
priateness of the chosen loss function is meaningless.

3. The noise variances which are:

11.8 (millivolt)2 altimeter

19.5 (millivolt)2 pitch gyroscope

Converting to feet and milliradians gives:

0.540 (feet)2 altimeter

0.147 (milliradians)2 pitch gyroscope

These are the diagonal elements in the Q matrix.
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IV. Evaluation of Filters for Aircraft Use:

It is a simple matter to invent situations in which the Martin filter is

significantly better than the Kalman filter or to invent situations in which

the improvement is zero or negligible.

In this chapter the relative effectiveness of the Martin filter in a

specific situation will be evaluated. The filter will be used to give an

optimal estimate of the rate of descent of an aircraft. The aircraft will be

modeled as a linear fourth-order system with state variables:

e = pitch angle in radians

x =
n

h = altitude in feet

The general form of the A matrix is:

all a12 aO3 

0 0 0
A=

o a
3 2

a 0
O a32 a33

o0 1 0

in which the undertermined a's are functions of the particular aircraft under

consideration.

The C matrix is:

1 0 

0 0 1

The position of the ones in C indicates that only the pitch and altitude

are observed. Therefore, if the error in h is uncorrelated with the errors

28



in both e and h, 7 n will give no information about h, and the Martin filter

will give the same estimate of h as the Kalman filter.

In terms of matrices this implies that if R is diagonal then the fourth

row in H will have all zero terms and no correction in the Kalman estimaten

of h will occur. Multiplying the matrices in H and keeping track of the

zeros in C and R
n

shows that this is true if R is diagonal. Ro0 the initial

Rn, can reasonably be assumed diagonal since there is no reason that errors

in 3, 0, h, and h should be correlated. R will not be diagonal in general
n

since errors in one state variable will propagate into the other state vari-

ables through the action of the 9 matrix.

Thus it is to be expected that the Martin filter will not be a significant

improvement until sufficient time has passed for Rn to develop significant

terms.

If P = 0 then R will tend to zero as time increases and it is possible
n

that no time interval will exist in which the Martin filter is a significant

improvement over the Kalman filter.

To give meaningful insight into the effectiveness of the Martin filter

for estimating the variance of h typical numbers have been chosen, and

E(ene ) evaluated for both the Martin and Kalman filter. The 4-4 element

in E(ene ) is the variance of h.

The numbers chosen are:

-0.60 -0.76 0.172 0

1.00 0 0 0
A=

0 0.0179 -0.40 0

0 0 1.00 0
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0.00328

0
RO = 

0

0

0

0.328

0

0

0

0

0.25

0

O

25.0

Q (°0164

0 25

T = 0.1 sec.

This value of Q was chosen from published manufacturer's specification!

and seems to reflect the actual signal variances better than the noise

variances alone.

The fact that the 3-3 term in RO is 0.25 means that initially the rate

of descent is well known. Equations 30 and 31 were then implemented in

FORTRAN and the variance of h was calculated for both filters.

The results are shown in Figure 15.
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Figure 15. The Variance of h for the Martin and Kalman Filters
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From Figure 15 it can be seen that for t > 2 seconds the Martin filter

is approximately 12 percent better than the Kalman filter. For t > 5 both

filters are so accurate that there is no reason to implement the more com-

plex Martin filter. If P1 $ 0 then R would not approach 0 and the 12

percent improvement of the Martin filter would continue to be important

for all times.

A more dramatic improvement is obtained if the initial estimate of h

is inaccurate. To illustrate this R was changed to:

3.28xlO03

R= 0

0

0

0

3.28xl QO 1

0

0

0

0

1 0x104

0

0

0

0

25

The 104 in the 3-3 position indicates that the standard deviation of the

error in the estimate of h is 100 feet/second. The error variances for both

filters are plotted in Figure 16.

Variance of
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Figure 16. Variance of h for High Turbulence Condition
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At t = 0.2 seconds the variance of the error in the Martin filter is ¼

of the variance of the error in the Martin filter. Thus in extremely tur-

bulent conditions, the Martin would have a steady state error variance of ¼

that of the Kalman filter.

To assure that the filters do converge when P1 # 0 an arbitrary P1 was

chosen:

-3

0 10- 3 0 0
P 

=

0 1 01 0 0 1

0 0 0 1

The system was simulated for 400 seconds. At the end of 10 seconds it

was in steady state. The steady state variances in the error was 19.48 for

the Kalman filter and 17.09 for the Martin filter. This is the same 12 per-

cent improvement which appears in Figure 12 for low turbulence situations,
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V. Summary:

The purpose of this grant was the development of a digital filter for the

optimal estimation of the rate of descent of aircraft. A filter, called the

Martin filter, was developed which gives the optimum estimate of the rate of

change of the state of the system. In situations where the error variances

are small the Martin filter will have an error variance of 88 percent of the

Kalman filter. If the error variances are large, such as in very turbulent

air, it will produce error variance of 25 percent of those produced by the

Kalman filter. These error variances are approximate. More accurate results

will not be possible until more data on the P matrix caused by various tur-

bulence conditions is known.
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